
Chemical Weather Prediction

ChemicalPrediction is very 
diffi lt i lldifficult, especially 
about the future – N. 
Bohr



Air Quality Modeling: Improving Predictions of Air Quality  
(analysis and forecasting perspectives)( y g p p )

Predicted Quantity: e.g., ozone AQ 
violation 

Met model

Chemical, Aerosol, 
Removal modules CTMCTM

H fid t i

Emissions Observations

How confident are we in 
the models & predictions? 



“Lessons” from 
th  ICARTT the ICARTT 
Experiment

Experiments such as 
these employ mobile 

“Super-Sites” and study 
ll ti tfl fpollution outflow from 
source regions



Extensive Real-Time Evaluation of Regional 
Forecasts – Stu McKeen

http://www.etl.noaa.gov/programs/2004/neaqs/verification/



Forecasting Air Quality an 
Important Activity in Air Quality 
ManagementManagement

* Persistence                           
* Single Forward Model w/o g
assimilation                             
* Ensemble forecast (8 models) 
w/o assimilation (further 
i  i h bi  i  improvements with bias corrections 
based on obs) McKeen et al., JGR, 2005



Ensemble Methods Also Work for PM2.5 
Forecasting

McKeen et al., JGR, 2007



Regional-Scale Chemical Analysis for Air Quality Modeling: 
A Closer Integration Of Observations And Models

Optimal analysis state

Chemical kinetics

Transport
Meteorology

CTM Observations
DataCTM Data 

Assimilation

Improved:Improved:

Aerosols

Emissions p o ed
• forecasts
• science
• field experiment design
• models 

p o ed
• forecasts
• science
• field experiment design
• models 

Emissions

• emission estimates
• S/R relationships
• emission estimates
• S/R relationships



Data assimilation methodsData assimilation methods
• “Simple” data assimilation methodsSimple data assimilation methods

– Optimal Interpolation (OI)
– 3-Dimensional Variational data assimilation3 Dimensional Variational data assimilation 

(3D-Var)
– Kriging

• Advanced data assimilation methods
– 4-Dimensional Variational data assimilation 

(4D-Var)
– Kalman Filter (KF) - Many variations, e.g. 

Ensemble Kalman Filter (EnFK)Ensemble Kalman Filter (EnFK)



Assimilation of MODIS AOD to Produce 
Constrained Fields for Climate Calculations

How to optimally adjust individual 
aerosol quantities given AOD (sulfate, 
BC, OC, dust, sea salt)? 

- AOD by itself not unique

- Fine mode fraction helps

- SSA gives info to adjust abs vs scat.SSA gives info to adjust abs vs scat.

W A i il ti

Technique: Collins, W. D., et al. (2001),, JGR, 106, 7313-7336

W - Assimilation

w/o - “

Chul et al., JGR, 2005 Adhikary et al., 2007,2008



Impact of Daily MODIS Assimilation on 
Predicted PM 2.5 at HCO
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Data assimilation

(new)

(old forecast)

δx



Advanced Data Assimilation Techniques Provide Data 
Fusion and Optimal Analysis Frameworks
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Example 4dVar:
Cost function
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minyψ y( )= y − yb
B−1 + H ⋅M (y)− o R−1

2

Current knowledge Model information consistent 
with physics/chemistry

Observations information 
consistent with reality

of the state with physics/chemistry y

The system is very under-determined – need to combine 
heterogeneous data sources with limited spatial/temporal information



Basic idea of 4D-VarBasic idea of 4D Var

•Define a cost functional
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Define a cost functional

which measures the distance between model output and observations, 

•Derive adjoint of tangent linear model

c easu es e d s a ce be ee ode ou pu a d obse a o s,
as well as the deviation of the solution from the background state
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Where φis the forcing term, which is chosen so that the adjoint 
variables are the sensitivities of the cost functional with respect tovariables are the sensitivities of the cost functional with respect to 
state variables (concentrations), i.e. 
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•Use adjoint variables for sensitivity analysis, as wellUse adjoint variables for sensitivity analysis,   as well   
as data assimilation



Challenges in chemical data assimilationChallenges in chemical data assimilation
• A large amount of variables (~300 concentrations 

of various species at each grid points)of various species at each grid points)
– Memory shortage (check-pointing required)

• Various chemical reactions (>200) coupled 
together (lifetimes of species vary from secondstogether (lifetimes of species vary from seconds 
to months) 
– Stiff differential equationsq

• Chemical observations are very limited, 
compared to meteorological data

Information should be maximally used with least– Information should be maximally used, with least 
approximation 

• Highly uncertain emission inventories
– Inventories often out-dated, and uncertainty not well-

quantified



4D-Var application with CTMs4D Var application with CTMs 

Forward CTM model evolution

Update control variables

Cost function

p

Checkpointing

Observations

Optimization

Cost function

Backward adjoint model integration
Gradients

Backward adjoint model integrationlimited memory 
BFGS quasi-Newton 
method 



Computational aspects
Discrete/continuous adjoint models, and their 

analysis, for  stiff chemical systems
integral-partial-differential aerosol dynamicintegral partial differential aerosol dynamic 

equations
upwind and slope/flux limited hyperbolic schemes
second order adjoints and optimization algorithmssecond order adjoints and optimization algorithms



Estimation of B and O critical
NMC th d (B)NMC method (B)

S b tit t d l• Substitute model 
background errors with 
the differences between 
24hr, 48 hr, 72 hr 
forecasts verifying at the 
same timesame time

• Calculate the model 
background errorbackground error 
statistics in three 
directions separately

• Equivalent sample number: 811,890



NMC method resultsNMC method results
Vertical correlation Horizontal correlationVertical correlation Horizontal correlation

l=2 5kml=2.5km
l=270m



Observational errorObservational error

Observational Error:
• Representative error

• Measurement error

Observation Inputs
• Averaging inside 4-D grid cellsAveraging inside 4 D grid cells

• Uniform error (8 ppbv)



Assimilation of ICARTT Ozone 
Ob iObservations



Intensive Field Experiments (e.g., ICARTT) Provide Our 
Best Efforts to Comprehensively Observe a Region

O3



Assimilation Produces An Optimal State Space

w/o assimilation with assimilation

Ozone 
predictions

All DataAll Data 
Used

Example July 20, 2004

Region-mean profile
Chai et al., JGR 2007



Information content of various 
observations evaluated by different 
combinations of data setscombinations of data sets 
assimilated –
the importance of measurements 
above the surface.

Surface-only Lidar-DC8



Verification: Ron Brown Observations 
Independent DataIndependent Data

Predicted uncertainties estimated from 
background (B) error estimatesbackground (B) error estimates



Source/Receptor Calculations: 
P b i hPerturbation approaches

Source-oriented approach -
Direct sensitivity analysis.  

Receptor/target-oriented 
approach - Adjoint sensitivity 

analysis. y



The Adjoints Are Themselves Very Valuable
CO as a tracer of fossil fuel CO2CO as a tracer of fossil fuel CO2…

Caveat: Fire, chemistry, LPS (Campbel et al, In Press)
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Adjoint 
Sensitivity

Provide insights 
into the footprint  
of an observation



Adjoint Analysis of the 
Contribution of Different 

Sensitivity of ozone 
violations wrt emissions

Emissions to Ozone Violations 
– July & August 2004

Hakami et al., ES&T 2006



The Ensemble Kalman Filter (EnKF)( )
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All sources of information used (model background observations)All sources of information used (model, background, observations)
Observations incorporated one batch at a time
Propagation of covariances very expensive
I E KF i i t d b bl fIn EnKF covariances are approximated by an ensemble of runs
No need for adjoint model (ease of use)
Can propagate uncertainty through nonlinear models



Ensemble-based chemical data assimilation 
t h i l t th i ti l t ltechniques can complement the variational tools

• Motivation:
– Ensemble-based d.a. generate a statistical sample of analyses
– Optimal state estimation applied to each member
– Can deal effectively with nonlinear dynamics
– Explicitly propagate (approximations of) the error statistics
– Complement variational techniques

• Issues:
– Initialization of the ensemble
– Rank-deficient covariance matrix  

• Contributions:
– Models of background error covariance
– Calculation of TESVs for reactive flows
– Targeted observations using TESVs
– Ensemble-based assimilation results



Challenges for reanalysis and forecasting appear to be 
different …. 4D-var and EnKF show promise for reanalysis

Sandu et al., Quart. J. Roy. Met. Soc, 2007



Challenges for reanalysis and forecasting appear to be 
different …. 4D-var and EnKF show promise for reanalysis 

but more work is needed to impact forecasts

Sandu et al., QJRMS, 2007



What parameters should be target 
f dj t t? i i i iti lfor adjustment? – emissions, initial 
conditions, boundary conditions? , y

and What Species?



In AQ Predictions Emissions Are A Major Source Of 
Uncertainty – Data Assimilation Can Produce Optimal 

Estimates (Inverse Applications)

Li et al., Atmos. 
Env., 2007



Results of Consideration of Emissions only 
and Emissions and Initial Conditions

2 0 76

r2=0.57

r2=0.76

Q Q plotsQ-Q plots
Points out 
model 
deficiencies



4D V t

Emission Inversion with Satellite Data

Time window:

1200 UT- 2000 UT

J l 20 2004

4D-Var setup:

July 20, 2004

Control:

Initial ozone, and NOx emissions

Ob tiObservations:

Ozone from different platforms, and 
SCIAMACHY tropospheric NO2
columns

Scaling 
factors

E only

E & IC



Our Analysis ApproachOur Analysis Approach

Prediction/

Analysis

State

DataData 
Assimilation



Documenting improvement 
(ICART)(ICART)
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Left: Quantile-quantile plot of modeled ozone with observed ozone for DC-8Left:  Quantile quantile plot  of  modeled ozone with observed ozone for  DC 8 
platform, data points collected at altitude less than 4000m, STEM-2K3, 
Forecast: NEI 1999, Post Analysis: NEI2001-Frost LPS*. MOZART-NCAR 
boundary conditions Right:  Probability distribution of % ozone bias for 
F t (NEI 1999) d t l i (NEI2001 F tLPS d NEI2001Forecast (NEI 1999) and post analysis runs (NEI2001-FrostLPS and NEI2001-
FrostLPS*) for DC-8 measurements under 4000m.

Mena et al., JGR, 2007



FUTURE DIRECTIONS FOR IMPROVING AIR QUALITY 
PREDICTIONS -- Summary

Models & measurements 
have improved substantiallyhave improved substantially. 

Further improvements will 
require reductions in key 

t i ti (uncertainties (e.g., 
emissions, better basic 
understanding of some 
processes)processes). 

Closer integration of 
observations.Tomorrow will be fine and sunnyTomorrow will be fine and sunny

--with moderate to heavy air pollutionwith moderate to heavy air pollution
Tomorrow will be fine and sunnyTomorrow will be fine and sunny

--with moderate to heavy air pollutionwith moderate to heavy air pollution

Need to develop better 
strategies for providing 
uniqueness to targeted FTS
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q g
applications (e.g., sources & 
sectors).
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